INTRO TO GROUP THEORY - MAR. 21, 2012 PROBLEM SET 7 - GT10/11. EXAMPLES OF NON-ISOMORPHIC GROUPS/AUTOMORPHISMS

- 1. Consider the real numbers \mathbb{R} with multiplication $x \circ y = x + y + 2$. Show that \mathbb{R} is a group using \circ , and find an isomorphism of (\mathbb{R}, \circ) with $(\mathbb{R}, +)$.
- 2. Suppose $\pi: G \to K$ is an isomorphism.
- (a) If H is a subgroup of G, show that $\pi(H)$ is a subgroup of K, and $\pi(H) \cong H$. If finite, show that $[G:H] = [K:\pi(H)]$. (Recall that [G:H] is the number of cosets of H modulo G.)
- (b) If $N \triangleleft G$, show that $\pi(N) \triangleleft K$, and that $G/N \cong K/\pi(N)$. Explain why $|xN| = |\pi(x)\pi(N)|$ as group elements.
- 3. (a) Find the isomorphism classes of $D_8/Z(D_8)$, $D_{12}/Z(D_{12})$, and $D_{12}/\{e, r^2, r^4\}$.
 - (b) Let $H = \{e, (12)(34), (13)(24), (14)(23)\}$. Find the isomorphism class of S_4/H .
- 4. Find the orders of all elements in $G = S_3 \times \mathbb{Z}/2$. What familiar group is G isomorphic to? Construct an explicit isomorphism.
- 5. (a) If $x^2 = e$ for all x in G and $|G| < \infty$, show that $G \cong \mathbb{Z}/2 \times \cdots \times \mathbb{Z}/2$ using induction.
 - (b) Prove it using linear algebra.
- 6. If $|G| < \infty$, explain why $|Aut(G)| \le (|G| 1)!$. Show that we have equality when $G \cong \mathbb{Z}/p$ for p = 2, 3. (More on this problem later.)
- 7. Calculate |Aut(G)| for $G = \mathbb{Z}/2 \times \mathbb{Z}/4$.
- 8. Consider the group of matrices Q generated by $M_1 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ and $M_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ in $GL(2,\mathbb{C})$.
 - (a) Find all elements of Q and their orders. Is Q a familiar group?
 - (b) Find the isomorphism class of $Inn(Q) \cong Q/Z(Q)$.

Date: March 6, 2012.

- 2 PROBLEM SET 7 GT10/11. EXAMPLES OF NON-ISOMORPHIC GROUPS/ AUTOMORPHISMS
- 9. (a) Let p be a prime, and recall that $Aut(\mathbb{Z}/p\times\mathbb{Z}/p)$ is isomorphic to $G=GL(2,\mathbb{Z}/p)$. We've seen that $GL(2,\mathbb{Z}/p)$ has $(p^2-1)(p^2-p)$ elements. Find the number of elements in $H=SL(2,\mathbb{Z}/p)$. How many if p=3,5,7?
- (b) Assuming elements of Z(G) are of the form cI, find |Z(G)| and |Inn(G)|. How about |Z(H)| and |Inn(H)|?
- 10. Calculate $|Aut(\mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2)|$. Find elements of orders 2, 3, and 7. (Hint: Companion matrices for order 7)